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AIlAract-This paper addresses the problem of minimisina the weight of a structural truss subject to static
constraints and member sizes only being available from a discrete set of commercially available gauges.
Substantial tbeoretical evidence is advanced to sugest that. given current mathematical techniques. it is not
possible to solve this problem exactly in aU cases. More specifically. the problem under consi4eration. even
in simple cases. is shown to be equivalent to a large number of other problems that are notorious for their
computational intractability. In practical terms. such a result justifies the development of methods that
approximately solve the problem and consequently. algorithms for solving it to within specified absolute
accuracy are considered. It is subsequently shown that such methods are equivalent in complexity to those
for solving the original problem.

I. INTRODUCTION
Structural trusses are employed in numerous areas ranging from bridge construction to
applications in the aerospace industry. As the weight of a truss is usually related to its cost or is
itself of intrinsic importance, the problem of optimising weight subject to the constraints of the
particular application is of considerable interest. Bounds on joint deflection, member stress and
gallIC are frequently encountered and it is the problem of truss-weight minimisation subject to
these three types of constraint to which this paper is addressed. Numerous methods have been
proposed to tackle this problem both for member sizes chosen from a continuum and from a
discrete set of commercially available gauges. Details of many of these can be found, for
example in Khot[l] or Fleury and Schmit[2]. All the proposed methods appear to work well on
some problems in that they generate an exact or sufficiently good approximate solution,
however, none of them claims to work well on all problems. Consequently, it is held that the
general problem is "difficult" to solve in the sense of guaranteeing an acceptably close
approximate solution using only a "reasonable" amount of computing time. The results of this
paper, which deals with the situation where member sizes are available from a discrete set, serve
to provide, in'this case, substantial theoretical justification for that point of view.

In order to avoid any diffiCUlties that may arise over the terminology used, the following
definitions are now introduced. The terminology adopted follows closely that used by Horowitz
and Sahni[31, which in turn is based on the standard suggested by Knuth[4].

Dtfinition 1
A deterministic algorithm is one in which the result of every operation is uniquely defined.

Definition 2
A non-deterministic algorithm is one in which the result of every operation is not uniquely

defined but is one of a specified set of possibilities. (This implies that the algorithm will for
certain operations have to "choose" an outcome, however, it may be considered that the
algorithm evaluates all possible outcomes simultaneously and chooses a correct one, if such
exists.)

Definition 3
A decision problem is a problem to which there is one of two possible solutions correspond­

ing to the boolean values "true" and "false".
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Definition 4
A polynomial-time algorithm is one whose running time (the number of elementary bit

operations performed on an input string of length N) is bounded above by some polynomial
p(N). The class of decision problems that can be solved by such an algorithm is denoted by P.

Definition 5
NP is defined to be the class of decision problems that can be solved by a non-deterministic

algorithm that runs in polynomial time.

Definition 6
A problem L.. reduces to another problem ~, or Lta~, if and only if any instance of £.

can be solved by a deterministic algorithm for solving ~ in polynomial time.

Definition 7
A problem is said to be NP-hard if every problem inNPreduces to it; itis NP-complete if it also

lies in NP.

It is widely held that a problem is not well-solved until a polynomial-time algorithm for it
has been devised and correspondingly a problem is considered to be intractable iftttere is no
polynomial-time algorithm that will solve it. An NP-hard problem may be thoughtof as beiugat
least as difficult to solve as any problem in NP and consequently, proving the intractability of
one NP-complete problem would render all NP-hard problems intractable. As yet, however, no
NP-complete problem has been well-solved or proved to be intractable. Nonetheless, tbeteis
considerable evidence to support the conjecture that NP-hard problems are intractable in tbat
the class of NP-complete problems contains a wealth of problems from the ftelds of OptUnisa­
tion, Graph Theory, etc. (see Garey and Johnson [5] for a relatively up-to-date compilation), and
over the years each has been the subject of investigation by many researchers, but no
polynomial-time algorithm has been devised for even one of them. Irrespective of the truth of
the conjecture, it is generally agreed that, at worst. NP-hard problems will remain perpetually
intractable and, at best, NP-complete problems will only be well-solved by a majoradvanee in
mathematical techniques.

In this paper it is proved that the problem under consideration isa member of the classof
NP-hard problems. As a half-way stage, the simpler problem of truss-weight. millimisation
subject only to deftection constraints is examined and it is shown that even without the added
complications of stress and gauge constraints, the problem is NP-hard. Such results dleoretic­
ally justify the development of algorithms that approximately solve tbeseproblems-an
expedient that is almost universally adopted in practive. Correspondingly, algorithms that
guarantee an absolute bound on the error are considered and it is then shOwn that tbe problem
of devising such an algorithm is also NP-hard.

1.1 Truss weight minimisation with deflection constraints
Let D be a structural truss with M members and J joints, then the weight of D is taken to

be:

M

W(A) = I pjljA;
i=1

(1.1)

where Pi is the mass density and l; the length of member i which has cross-sectional area Ai,
i = 1, 2, ... , M. The minimum weight problem considered requires minimisation of W(A)
subject to:

and
j 1,2, ,J}

i::::: 1,2, , M.
(1.2)
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Here 6j is the detlection of joint j in direction 'I due to a loading F and S is a finite subset of
R+. Only a single load case is considered since multiple-load cases do not alter the nature of the
problem but do complicate notation. Without loss of aenerality, the set S of available member
sizes is taken to be weD ordered, i.e. i < j implies SI < sJ and vice-versa, V~ j,

Usins the Principle of Virtual Work and the substitutions:

where 7i is the force in member ; due to loading F, Til the virtual force in member ; due to unit
load applied in direction 'J at joint j and E is Youngs' modulus, the minimisation of (1.l)
subject to (1.2) can be transformed to:

Itt

minimise w(A)::: I ytAl
A 1-'

subject to:
(1.3)

Itt I!u. '_I A s8Jt 1-1,2, ... ,1
1=1 I

AI E S ;::: 1,2, ... ,M

For convenience, problem (1.3) will be referred to as DMTD (Discrete member-size Minimum
weitht Truss problem with Deflection constraints), In the succeeding section it is shown that
DMTD is NP-hard.

2. TO SHOW THAT DMTD IS NP-HARD
In order to show that a liven problem, ~ say, is NP-bard, it is suflcient to select a

problem, Lit already known to be NP-hard and show that L I reduces to ~, i.e. Lla~.

Consequently, it must be shown how to obtain an instance of ~ from any instance of L, in
polynomial deterministic time in such a way that the solution of the instance of L, can be
determined from the solution of the instance of ~ in polynomial deterministic time. Having
done this, it may be readily concluded that since the relation is transitive, ~ is NP-hard.
(Details of the transitivity of a can be found, e.g. in Karp [6], and examples of usins this
technique in Horowitz and Sahni[3]).

For current purposes the problem selected as being known to be NP-hard is the 0-1
Knapsack problem (KP) (see Horowitz and Sahni[3]). It is stated bere as:

Itt

maximise G(Y)::: '5' alYi
y ~

subject to:

(2.1)

Yi::: 0 or 1 i::: 1,2, ... ,M
at E Z+, bl E z+ Vi.

It is noted that some texts quote alternative formulations of the 0-1 Knapsack problem,
however, no difficulties arise as all of the alternatives are related to (2.1) via a.
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From the instance (2.1) of KPdetine the instanc;e of DNTD by:

M

minimise w(A) = I 'YiAI
A I-I

subject to:

fA:s;c (2.2)
I-I AI

AI % A(I) or A(2) j= 1,2, ... , M

A(I)<A(2)

where

'YI = ai } j = 1,2, ... , M
f3i = b.Q<Q+ 1)

C=1

A(l) =(R +oQ)Q

A(2) =(R +oQ)(Q+ 1)

M

0'= I bi
I-I

and
QEZ'".

Let I denote the instance (2.1) of KP and I' the instance (2.2) ofDNTD, then:

Result 1
Y is an optimal solution to I if and only if Ais an optimal solution to I' where:

Proof (Necessity)
Suppose yt is a feasible solution of I where:

{
I jE V

Y;t= 0 iE Vc

then

whence

=R+O'Q
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or

'S" MQ+ 1) + 'S" bl} S 1
l~ (R +uQ) J~< (R +uQ)

or

'S" ~AI + 'S" -fmA S 1.
~ j~<

Thus if yt is a vector that satisfies the constraints of 1. then the vector At defined by:

satilfiesthe constraints of 1'.
Let t be an optimal solution to 1 and Y* any other feasible but suboptimal vector, then:

and thus

where Y* is defined by the partition V, v~ and t by the partition T, T.,
Now since

then

and thus

Hencc:

and therefore

i.e.
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whence
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Hence necessity is proven.
Sufficiency can likewise be proved by noting that all implications are reversable.

Theorem I
DMTD is NP-hard.

Proof
Since Result 1 holds and instance I' of DMTD can be obtained in polynomial deterministic

time from instance I of KP, then KPaDMTD. Further, since KP is NP-hard, then DMTD is
NP-hard also.

3. TRUSS WEIGHT MINIMISATION WITH GAUGE, STRESS AND DEFLECTI()-N CONSTRAINTS
In considering the problem of miDimising the weight of a truss subject to these three types

of constraint it is only necessary to examine the problem defined by (1.1) and (1.2) subject to
the additional constraints:

Ai 2: Ait }
Uj :5 uit

i = 1,2, ... , M

where Uj is the stress in member i due to the external loading F.
As before the problem can be transformed, in addition to the manipulations detailed in

Section 1.1, by the substitutions:

- ( J.To )Ai = max Ait, BUi't '

and

A~ = mil! (Sk)
'it2:A;

to the problem:

M

minimise w(A) = ~ 'rjA;
A. i=l

subject to:

f J&A·.. :5 8i t j = 1, 2, ... , ]
i=l i

(3.1)

For the sake of convenience, this problem will be referred to as DMT (Discrete member-size
Minimum weight Truss problem). It is now a simple task to showthatDMT is NP-hard.

As before KP is used as the problem known to be NP-hard and (2.1) taken as the instance
of KP. Define an instance of DMT by:

M

minimise w(A) = ~ 'riAi
A i=\



subject to:

where

and
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A,~A'} .A,ES r=I.2..... M

'Y/=a, }
p, =b,Q(Q+ 1) i= 1.2•...• M

C=1

S ={A(O). Am, AU~

A(O)=(R+oQ)(Q-l)

A(I) =(R +oQ)Q

AU) =(R + oQ)(Q+ 1)

Itt

O'=! bl
i-I

Q2!:2ET

.93

(3.2)

A result analqous to Result 1 can now be proved; the details are omitted as its proof is
identical to that of Result 1. This then leads to:

TMortm 2
OM! is NP~bard.

Proof
This foDowsthe proof of Theorem 1with, in this case, DM! replaciDg OMTD.

In essence. Theorems 1 and 2 prove not only that DMTD and DMT respectively are
NP-lJard;, but also the s1rOft8er results that DMTD and OM! are NP-hard even in the simple
caMI which involve a si. deftection constraint and a choice of only two possible member
sizes.

In proviDg these results no attempt was made to distinguish between determinate and
indeterminate trusses, in fact such a distinction was unnecessary. That DMT is NP~hard does,
however, introduce certain issues which have a bearing on practical applications. and since it
has become almost a fact of life that most practicable stnlctures are indeterminate. it will be
these that are bighliahted in the foUowiDg.

Only a siq1e analysis of a statically determinate truss is necessary to define the sinale
instance of DMT which. if it can be solved exactly, will aenente member sizes that correspond
to minimum weight. On the other hand. despite the fact that DM! is alaebraically weD defined
for a statically indeterminate truss. this is not so numerically and current procedural dictates
require aniterati\<e solutien teehDique which performs an analysis and aeaerates a n_ic:aIly
weD defined instance of DMT which must be solved at each iteration. In view of die
cotnpIItIltioaaDyiittncsabte nature of NP~hardproblems, the result of Tbeorem 2..... that
the IOba1ion of an iMtaace of DMT for a determinate truss may require III UD8CCIptIIbIy IIqe
amo8IIt of timeliftd that tile weiahtoptimisation and ccmsequent solUtion of several instuceI of
DMT for an indeterminate truss may be even more time critical. That this is so is bome out by
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the practical experience of workers in the field who have long since realised that the number of
iteration steps (and therefore the number of DMT's requiring solution) significantly affects the
computer time necessary to reach a solution, and consequently, that the number should be
minimised whenever possible. Now Theorem 2 must be considered as a prime theoretical
reason for justifying the expedient which is now ubiquitous in practice: that of seeking only an
approximate solution to DMT. Consequently, the remainder of this paper is concerned with
examining a particular dass of approximation algorithms for DMT where:

Definition 8
Let L be an optimisation problem, then an approximation algorithm A for L is an algorithm

that always generates a feasible solution to L whose value is "sufficiently close" to the value of
the optimum.

4. ABSOLUTELY-BOUNDED APPROXIMATION ALGORITHMS FOR DMT
The class considered is that of absolutely-bounded approximation algorithms, where:

Definition 9
Ais an absolutely-bounded approximation algorithm for a problem L if and only if for every

instance I of L:

10t(1) - 0*(1)1 :S K

where 0*(1) is the optimum value of the instance I, Ot(I) is the value of the feasible solution to
I that is generated by A and K is a constant. (It is noted that some authors, see e.g. Horowitz
and Sahni[3), use the term "absolute" instead of "absolutely-bounded").

In the present case DMT is a minimisation problem and the above condition can be
rewritten as:

0(1) :S K +0*(1) (4.1)

for all instances. Since approximate solutions to DMT are so frequently sought in practice an
absolutely-bounded approximation algorithm would cIearlybe most desirable and of,great
value. For many NP-hard problems, algorithms of this type can be shown t<lex!st only if the
class of problems solvable in polynomial deterministic time is equivalent to the class of
problems solvable in polynomial non-deterministic time viz. the approximation a1gorithllls are
themselves NP-hard; unfortunately this is the case with absolutely-bounded approximate
algorithms for DMT.It is not diftieult to conjecture that this is true inview of thefactthaU)MT~
be scaled. In order to substantiate this conjecture, a formal proof .that deri~i118 anat>solute1y­
bounded approximate algorithm for DMT is NP-hard is given below, but. first, the fQllowing
definition is provided:

Definition 10
Theabsoluteiy-bounded approximate DMT problem is the problem of finding any feasible

solution of DMT which satisfies (4.1).

Theorem 3
The absolutely-bounded approximateDMT problem is NP-hard.

Proof
This follows tbe techniques used to prove that the absolutely-bound.ed approximate~ 1

Knapsack problem is NP..hard, see (8].
The problem adopted as being known to be NP-hard is DMT. Let (3.1) define instance I of

DMT and assume that ')I; E Z\ ~iJ E r, ;= 1, 2, ... , M, j == 1, 2, ... , l, and Sic E r, k == 1,
2, ... , K. Further assume that A is a polynomial time algorithm that guarantees feasible
solutions Ot(l) such thatot(1) :S K +0*(1) for every instance I and fixed finite K.
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Define an instance 1'. of the absolutely-bounded approximate DMT problem. by:

M

minimise weAl == ~ (K + l)'YiA
A i=\

subject to:

Ai~A'ES}
S

i==I.2•... ,M
AiE
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where the 'Yi. the Pi; and the Sk are as defined for I. _
It is clear that I and I' have the same set of feasible vectors A. that the solution vector A to

I is also the solution vector to I'. and that 0*(1') == (K +1)0*(1).
Further. since the 'Y; and 5k are integer. all feasible solutions to l' have value 0*(1') or at

least 0([') == fi*(I') +(K +I). Consequently. if fit(I') is the value of the solution generated by A
for instance 1'. then either f1t(1') - fi*(1') = 0 or fit(l') - fi*(l') ~ K + 1. However. A guarantees
fit([') - 0*(1') S K. hence f1t(I') == fi*(l'). Consequently. A can be used to obtain an optimal
solution for I' and hence for I. and the result follows from the fact that DMT is NP-hard.

This result clearly shows that finding a solution to the absolutely bounded approximate
DMT problem is as difficult as finding a solution to the original DMT problem. In practical
terms this result implies that any acceptably fast algorithm will only guarantee a condition on
fit(I) that is weaker and therefore clearly less desirable than (4.1).

5. SUMMARY AND DISCUSSION
The problem of minimising the weight of structural trusses subject to constraints on joint

deflection and member stress and gauge has been considered. In particular. the case DMT
where member sizes are available from a discrete set has been examined and shown to be
NP-hard. As an intermediate step. the problem DMTD where only joint deftection constraints
apply. was also shown to be of equivalent difficulty. Consequent upon these results. the
problem of devising an approximation algorithm for DMT that guaranteed a bound on the
absolute error was considered. but unfortunately. this too proved to be NP-hard.

That these problems are NP-hard can be viewed from two directions. On the one hand.
NP-hardness does not incontravertibly prove that these problems are intractable since it may
be true that P == NP. however this result has so far eluded proof. Furthermore. there exist
NP-hard problems. for example: integer linear programming and the Knapsack problem. for
which there are algorithms that work well in practice despite their having exponential time comple­
xity. On the other hand problems that are NP-complete andlor NP-hard are. in general. de facto
intractable since currently available techniques cannot "adequately" solve them and examples
that work well in practice. such as those quoted above are rare. Despite these two opposing
viewpoints it is more reasonable. in the light of the current state of knOWledge. to operate under
the assumption that P '" NP with all its attendant implications. than to adopt the alternative
stance and commit considerable time and manpower to proving the contrary with. on the basis
of experience. only a minimal expectation of success. It is the belief of the authors that such
should be the operational considerations for DMT especially when account is taken of the
accumulated practical experience gained in attempting to solve it.
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